Predicting Opponent Actions by Observation
نویسندگان
چکیده
In competitive domains, the knowledge about the opponent can give players a clear advantage. This idea lead us in the past to propose an approach to acquire models of opponents, based only on the observation of their input-output behavior. If opponent outputs could be accessed directly, a model can be constructed by feeding a machine learning method with traces of the opponent. However, that is not the case in the Robocup domain. To overcome this problem, in this paper we present a three phases approach to model low-level behavior of individual opponent agents. First, we build a classifier to label opponent actions based on observation. Second, our agent observes an opponent and labels its actions using the previous classifier. From these observations, a model is constructed to predict the opponent actions. Finally, the agent uses the model to anticipate opponent reactions. In this paper, we have presented a proof-of-principle of our approach, termed OMBO (Opponent Modeling Based on Observation), so that a striker agent can anticipate a goalie. Results show that scores are significantly higher using the acquired opponent’s model of actions.
منابع مشابه
Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملOMBO: An opponent modeling approach
In competitive domains, some knowledge about the opponent can give players a clear advantage. This idea led many people to propose approaches to acquire models of opponents, based only on the observation of their input-output behavior. If opponent outputs could be accessed directly, a model can be constructed by feeding a machine learning method with traces of the behavior of the opponent. Howe...
متن کاملExploiting Opponent Modeling for Learning in Multi-Agent Adversarial Games
An issue with learning effective policies in multi-agent adversarial games is that the size of the search space can be prohibitively large when the actions of both teammates and opponents are considered simultaneously. Opponent modeling, predicting an opponent’s actions in advance of execution, is one approach for selecting actions in adversarial settings, but it is often performed in an ad hoc...
متن کاملOn the impossibility of predicting the behavior of rational agents.
A foundational assumption in economics is that people are rational: they choose optimal plans of action given their predictions about future states of the world. In games of strategy this means that each player's strategy should be optimal given his or her prediction of the opponents' strategies. We demonstrate that there is an inherent tension between rationality and prediction when players ar...
متن کاملPredicting upcoming actions by observation: some facts, models and challenges
Predicting another person's upcoming action to build an appropriate response is a regular occurrence in the domain of motor control. In this review we discuss conceptual and experimental approaches aiming at the neural basis of predicting and learning to predict upcoming movements by their observation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004